Algebra standards: Book A

<u>Calculate rates</u>

A.PA.06.01 Solve applied problems involving rates, including speed, e.g., if a car is going 50 mph, how far will it go in $3\frac{1}{2}$ hours?

Understand the coordinate plane

A.RP.06.02 Plot ordered pairs of integers and use ordered pairs of integers to identify points in all four quadrants of the coordinate plane.

<u>Use variables, write expressions and equations, and combine like terms</u> A.FO.06.03 Use letters, with units, to represent quantities in a variety of contexts, e.g., y lbs., k minutes, x cookies.

A.FO.06.04 Distinguish between an algebraic expression and an equation.

A.FO.06.05 Use standard conventions for writing algebraic expressions, e.g., 2x + 1 means "two times x, plus 1" and 2(x + 1) means "two times the quantity (x + 1)."

A.FO.06.06 Represent information given in words using algebraic expressions and equations.

A.FO.06.07 Simplify expressions of the first degree by combining like terms, and evaluate using specific values.

<u>Represent linear functions using tables, equations, and graphs</u> A.RP.06.08 Understand that relationships between quantities can be suggested by graphs and tables.

A.PA.06.09 Solve problems involving linear functions whose input values are integers; write the equation; graph the resulting ordered pairs of integers, e.g., given c chairs, the "leg function" is 4c; if you have 5 chairs, how many legs?; if you have 12 legs, how many chairs?

A.RP.06.10 Represent simple relationships between quantities using verbal descriptions, formulas or equations, tables, and graphs, e.g., perimeter-side relationship for a square, distance-time graphs, and conversions such as feet to inches.

Solve equations

A.FO.06.11 Relate simple linear equations with integer coefficients, e.g., 3x = 8 or x + 5 = 10, to particular contexts and solve.

A.FO.06.12 Understand that adding or subtracting the same number to both sides of an equation creates a new equation that has the same solution.

A.FO.06.13 Understand that multiplying or dividing both sides of an equation by the same non-zero number creates a new equation that has the same solutions.

A.FO.06.14 Solve equations of the form ax + b = c, e.g., 3x + 8 = 15 by hand for positive integer coefficients less than 20, use calculators otherwise, and interpret the results.

Algebra GLCEs standards: Book B

<u>Understand and apply directly proportional relationships and relate to linear</u> <u>relationships</u>

A.PA.07.01 Recognize when information given in a table, graph, or formula suggests a directly proportional or linear relationship.

A.RP.07.02 Represent directly proportional and linear relationships using verbal descriptions, tables, graphs, and formulas, and translate among these representations.

A.PA.07.03 Given a directly proportional or other linear situation, graph and interpret the slope and intercept(s) in terms of the original situation; evaluate y = mx + b for specific x values, e.g., weight vs. volume of water, base cost plus cost per unit.

A.PA.07.04 For directly proportional or linear situations, solve applied problems using graphs and equations, e.g., the heights and volume of a container with uniform cross-section; height of water in a tank being filled at a constant rate; degrees Celsius and degrees Fahrenheit; distance and time under constant speed.

A.PA.07.05 Recognize and use directly proportional relationships of the form y = mx, and distinguish from linear relationships of the form y = mx + b, b non-zero; understand that in a directly proportional relationship between two quantities one quantity is a constant multiple of the other quantity.

Understand and represent linear functions

A.PA.07.06 Calculate the slope from the graph of a linear function as the ratio of "rise/run" for a pair of points on the graph, and express the answer as a fraction and a decimal; understand that linear functions have slope that is a constant rate of change.

A.PA.07.07 Represent linear functions in the form y = x + b, y = mx, and y = mx + b, and graph, interpreting slope and y-intercept.

A.FO.07.08 Find and interpret the x and/or y intercepts of a linear equation or function. Know that the solution to a linear equation of the form ax+b=0 corresponds to the point at which the graph of y=ax+b crosses the x axis.

Understand and solve problems about inversely proportional relationships

A.PA.07.09 Recognize inversely proportional relationships in contextual situations; know that quantities are inversely proportional if their product is constant, e.g., the length and width of a rectangle with fixed area, and that an inversely proportional relationship is of the form y = k/x where k is some non-zero number.

A.RP.07.10 Know that the graph of y = k/x is not a line, know its shape, and know that it crosses neither the x nor the y-axis.

Apply basic properties of real numbers in algebraic contexts

A.PA.07.11 Understand and use basic properties of real numbers: additive and multiplicative identities, additive and multiplicative inverses, commutativity, associativity, and the distributive property of multiplication over addition.

Combine algebraic expressions and solve equations

A.FO.07.12 Add, subtract, and multiply simple algebraic expressions of the first degree, e.g., (92x + 8y) - 5x + y, or x(x+2) and justify using properties of real numbers.

A.FO.07.13 From applied situations, generate and solve linear equations of the form ax + b = c and ax + b = cx + d, and interpret solutions.

Algebra standards: Book C

Understand the concept of non-linear functions using basic examples

A.RP.08.01 Identify and represent linear functions, quadratic functions, and other simple functions including inversely proportional relationships (y = k/x); cubics ($y = ax^3$); roots ($y = \sqrt{x}$); and exponentials ($y = a^x$, a > 0); using tables, graphs, and equations.

A.PA.08.02 For basic functions, e.g., simple quadratics, direct and indirect variation, and population growth, describe how changes in one variable affect the others.

A.PA.08.03 Recognize basic functions in problem context, e.g., area of a circle is πr^2 , volume of a sphere is $\frac{4}{3}\pi r^3$, and represent them using tables, graphs, and formulas.

A.RP.08.04 Use the vertical line test to determine if a graph represents a function in one variable.

Understand and represent quadratic functions

A.RP.08.05 Relate quadratic functions in factored form and vertex form to their graphs, and vice versa; in particular, note that solutions of a quadratic equation are the x-intercepts of the corresponding quadratic function.

A.RP.08.06 Graph factorable quadratic functions, finding where the graph intersects the x-axis and the coordinates of the vertex; use words "parabola" and "roots"; include functions in vertex form and those with leading coefficient -1, e.g., $y = x^2 - 36$, $y = (x - 2)^2 - 9$; $y = -x^2$; $y = -(x - 3)^2$.

Recognize, represent, and apply common formulas

A.FO.08.07 Recognize and apply the common formulas: $(a + b)^2 = a^2 + 2 ab + b^2$ $(a - b)^2 = a^2 - 2 ab + b^2$ $(a + b) (a - b) = a^2 - b^2$; represent geometrically. **A.FO.08.08** Factor simple quadratic expressions with integer coefficients, e.g., $x^2 + 6x + 9$, $x^2 + 2x - 3$, and $x^2 - 4$; solve simple quadratic equations, e.g., $x^2 = 16$ or $x^2 = 5$ (by taking square roots); $x^2 - x - 6 = 0$, $x^2 - 2x = 15$ (by factoring); verify solutions by evaluation.

A.FO.08.09 Solve applied problems involving simple quadratic equations.

<u>Understand solutions and solve equations, simultaneous equations, and linear</u> <u>inequalities</u>

A.FO.08.10 Understand that to solve the equation f(x) = g(x) means to find all values of x for which the equation is true, e.g., determine whether a given value, or values from a given set, is a solution of an equation (0 is a solution of $3x^2 + 2 = 4x + 2$, but 1 is not a solution).

A.FO.08.11 Solve simultaneous linear equations in two variables by graphing, by substitution, and by linear combination; estimate solutions using graphs; include examples with no solutions and infinitely many solutions.

A.FO.08.12 Solve linear inequalities in one and two variables, and graph the solution sets.

A.FO.08.13 Set up and solve applied problems involving simultaneous linear equations and linear inequalities.